

DØ Note ????
V0.6

New SAM Schema at DØ:
Description & Requirements

Diana Bonham,
Lauri Loebel Carpenter,
Anil Kumar, Adam Lyon*, Carmenita Moore,
Wyatt Merritt, Jeremy Simmons†,
Julie Trumbo, Stephen White, Sinisa Veseli

Fermilab

April 14, 2004

* For comments/corrections/questions regarding this document, send Adam e-mail at lyon@fnal.gov
† Consultant from Piocon Technologies, Naperville, IL

1 Introduction

The new SAM Schema aims to solve several problems:

• Use of place holder data due to attribute restrictions that are not
appropriate for all file types.

• Inability to assign more than one run number to a file (especially
important for files that are merged across many runs).

10/16/03

2 of 13

• Difficulty in grouping data files into data sets for easy access. Right
now, users must remember valid reconstruction versions in order to
define their datasets.

• Important file information is spread throughout the database. For
example, to determine if a file is Monte Carlo or Collider Data
requires a query with several joins.

• Incorporate CDF luminosity information for their files.

The original design idea is described in DØ Note 4083 (http://www-
d0.fnal.gov/cgi-bin/d0note?4083) with separate DATA_FILES like tables
for different types of files. That was seen as too large of a change, and so a
compromise was reached. The design now is to have each file in
DATA_FILES carry an attribute that describes the file type. Database
triggers to validate specific DATA_FILE attributes will be discussed and
coordinated jointly by the applications and database groups when dbserver
code modifications are being developed.

This document describes this schema update as well as changes that will
be necessary to applications, dbservers, etc.

The entire SAM DB schema ER diagram is too large to put in this
document. See the latest version on the web at
http://d0db.fnal.gov/sam/doc/design/sam_entities/er_diagram.ps.

2 File Meta-data

The DATA_FILES table holds most of the file information.

2.1 File Types
We identify five types of data files that are to be stored in the DATA_FILES
table. The abbreviations are for reference in this document and are not meant
to be in the database.

• nonPhysicsGeneric (NPG): Generic non-event files (perhaps log files).

• importedDetector (ID): Event data from collisions that were brought
into SAM without a SAM project (e.g. from the online system). At DØ
these would be raw files.

• importedSimulated (IS): Event data from Monte Carlo that were not
produced by a SAM project.

• derivedDetector (DD): Event data produced by running a SAM project
over collider data.

10/16/2003

3 of 13

• derivedSimulated(DS): Event data produced by running a SAM project
over Monte Carlo data.

• physicsGeneric (PG): Event data produced for personal purposes
(storage of personal skims or Monte Carlo). These files may not have
all meta-data.

• cdfDataSet: Used only by CDF.

• cdfFileSet: Used only by CDF.

The possible file types are stored in the new FILE_TYPE table. The file type
ID is then stored in the DATA_FILES table in the FILE_TYPE_ID attribute.
The file types will be stored with mixed case, though the DB server will
transform them to lower case for querying purposes.

2.2 Attributes for DATA_FILES
The required and optional attributes in DATA_FILES now depend on the file
type. Only attributes that are required for all file types are non-nullable. The
following table describes all of the attributes for DATA_FILES. Note the
abbreviations for the file types above. In the table, R indicates the attribute is
required, O indicates optional, and N/A indicates the attribute is not applicable
to that particular file type.

Attribute NPG ID IS DD DS PG Notes

FILE_ID R R R R R R Non-nullable
attribute.

FILE_TYPE_ID R R R R R R
Non-nullable
attribute. New
attribute.

FILE_NAME R R R R R R Non-nullable
attribute.

FILE_FORMAT_ID R R R R R R
Non-nullabl e
attribute.
Was nullable.

FILE_SIZE_IN_BYTES R R R R R R
Non-nullable
attribute.
Was nullable.

CRC_TYPE R R R R R R
Non-nullable
attribute.
Was nullable.

CRC_VALUE R R R R R R Non-nullable
attribute.

10/16/03

4 of 13

Attribute NPG ID IS DD DS PG Notes

Was nullable.

CREATE_USER R R R R R R Non-nullable
attribute.

CREATE_DATE R R R R R R Non-nullable
attribute.

UPDATE_USER R R R R R R Non-nullable
attribute.

UPDATE_DATE R R R R R R Non-nullable
attribute.

FILE_CONTENT_
STATUS_ID R R R R R R

Non-nullable
attribute.
Was nullable.

DATA_TIER_ID N/A R R R R R

All event data
must have a
data tier. This
attribute does
not apply to
non-event data.
Was non-
nullable.

APPL_FAMILY_ID N/A R R R R O Was non-
nullable.

FILE_PARTITION N/A R N/A N/A N/A N/A
At DØ, only
raw data files
have a
partition.

PROCESS_ID N/A N/A N/A R R O

Non-imported
event data have
process IDs.
Was non-
nullable.

RESPONSIBLE_WORKING_
GROUP_ID O N/A R R R O

New attribute.
Indicates the
group (e.g.
W/Z)
responsible for
the data (e.g.
W/Z) as
opposed to the
group who
produced the
data (e.g. MC)

10/16/2003

5 of 13

Attribute NPG ID IS DD DS PG Notes

PHYSICAL_DATASTREAM_ID N/A R O R O O

Monte Carlo
files may or
may not be
streamed.
Was non-
nullable.

EVENT_COUNT N/A R R R R O Was non-
nullable.

FIRST_EVENT_NUMBER N/A R R R R O
Difficult to fill
for old files.
Was non-
nullable.

LAST_EVENT_NUMBER N/A R R R R O
Difficult to fill
for old files.
Was non-
nullable.

START_TIME N/A R N/A N/A N/A N/A

At DØ, only
raw files have a
valid start time.
Was non-
nullable.

END_TIME N/A R N/A N/A N/A N/A

At DØ, only
raw files have a
valid end time.
Was non-
nullable.

2.2.1 Removed attributes
The following attributes are removed from the DATA_FILES table,

• FILE_STATUS. This attribute is deprecated from a previous schema
cut. Any data may be discarded during the schema migration.

• FILE_AVAILABILITY_STATUS. This attribute is deprecated. File
availability information is saved with location and station information.
Any data may be discarded during the schema migration.

• RUN_ID. This attribute is replaced by the DATAFILE_RUNS table.
Data should be saved as discussed in section 4.2.

• LUM_MIN, LUM_MAX. The data from these attributes are in the new
DATAFILE_LUMBLOCK table (see section 5). Note that for the

10/16/03

6 of 13

schema migration, any data in these attributes should be copied to the
new table.

• MINBIAS_NUMBER, MINBIAS_TYPE,
PHYSICS_PROCESS_ID. These attributes were meant to store
Monte Carlo specific information. Such information is duplicated in
the MC parameters.

• KBYTE_FILE_SIZE. Removed in favor of FILE_SIZE.

2.3 Change from free text to restricted values
Several columns that were free text are now restricted with support tables.
These new columns are DATA_TIER_ID (DATA_TIER was the old
column) and FILE_FORMAT_ID (FORMAT_INFO was the old column).

2.4 Implementation
Implementation of this new schema will require changes to the database,
database servers and applications.

The DB server methods and applications that deal with saving files in SAM
will have to pay attention to the FILE_TYPE and require other attributes as
appropriate.

In order to keep the DB servers as flexible as possible, the attribute constraints
will be coded in a configuration file loaded at runtime. The DB server could
thus be easily tailored for DØ and CDF.

2.4.1 New FILE_TYPE_ID attribute
The FILE_TYPE_ID attribute is new to the schema. DB servers will need to
fill this attribute and query applications will need to use it. This change
permeates most applications (MISWEB, Dataset Definition Editor, etc.) that
query for files. The ID will point into a new FILE_TYPE table that specifies
the valid file types as shown in section 2.1.

For the schema migration, the current files in the DB must be assigned a file
type. This assignment may be determined from the file data-tier and the run
type. To get the run type, determine the RUN_ID of the file and look it up in
the RUNS table. The RUN_TYPE_ID has the run type information.

CDF and DØ will migrate to the file type differently. The rules for DØ are as
follows:

• Data-tier is unofficial-reco then file type is physicsGeneric

• Data-tier is epics, sam-dbserver-log, sam-master-log, significant-
event, special then file type is nonPhysicsGeneric

10/16/2003

7 of 13

• Data-tier not above and run_type is monte carlo and process_type is
analysis, then file type is derivedSimulated.

• Run_type is monte carlo and process_type is not analysis then file
type is importedSimulated

• Run_type is not monte carlo and process type is analysis then file type
is derivedDetector

• Run_type is not monte carlo and process type is not analysis then file
type is importedDetector

The rules for CDF are as follows:

• File status of virtual: with file name of six characters have the
cdfDataSet file type; with file name of eight characters have the
cdfFileSet type; otherwise file type is nonPhysicsGeneric.

• File status of being imported or deleted: nonPhysicsGeneric file type.

• File status of available with data-tier of raw: ImportedDetector file
type if the file name has 17 characters; otherwise file type is
nonPhysicsGeneric.

• File status of available with data-tier of reconstructed:
derivedDetector file type if the file name has 17 characters; otherwise
file type is nonPhysicsGeneric.

• File status of available with data-tiers of generated or simulated:
importedSimulated file type if the file name has 17 characters;
otherwise file type is nonPhysicsGeneric.

• File status of available with data-tier of unidentified:
nonPhysicsGeneric file type (regardless of file name length)

2.4.2 FILE_FORMAT_ID attribute
This attribute is meant to describe what application or tool is needed to read
the file (for example, dspack, tar, root, gzip). This used to be the free text
FORMAT_INFO attribute, but now will be a restricted attribute with a support
table. At this time, the FORMAT_INFO attribute is not being filled. For the
schema migration, it’s easy to automatically deduce the file format. The rules
for DØ are as follows (use the ID that corresponds to the format specified
below):

• Files with unidentified data-tier will have unknown format.

10/16/03

8 of 13

• digitized, digitized-bygroup, filtered-raw, filtered-reco, filtered-
thumbnail, generated, generated-bygroup, raw, raw-bygroup,
reconstructed, reconstructed-bygroup, simulated, simulated-bygroup,
thumbnail, thumbnail-bygroup, triggersimulated, unofficial_reco data
tiers are all in the dspack format.

• root-bygroup, root-tuple, root-tuple-bygroup, filtered-root data tiers
are all in the root format.

• v-filtered-thumbnail, virtual-filtered-reco, virtual-filtered-root, virtual-
thumbnail are all in the ethereal format. (Entries of these data-tiers
may be removed in a later schema cut).

• For all other data tiers (e.g. epics, sam-dbserver-log, sam-master-log,
significant-event, special), the type depends on the file name. If the file
name ends in “tar”, then the format should be tar. If the file name ends
in “tar.gz” then the format should be gzipped-tar. If the file ends in
“.sta”, then the format should be run-1-sta.

The DB server should add the correct FILE_FORMAT_ID when it is easy to
determine. Otherwise, it will have to use and require input from the user. The
applications that store files into SAM will have to allow for such input for the
appropriate non-event data tiers.

2.4.3 New RESPONSIBLE_WORKING_GROUP_ID attribute
This new attribute points into the WORKING_GROUP table and is meant to
identify the group responsible for the contents of a particular data file in SAM.
It is not meant for resource tracking, but rather tells the user who they can talk
to if they have a question about a file. This attribute is different than the
WORKING_GROUP_ID that may be obtained from the process information
(that is the group that produced the file).

The DB server methods and applications that deal with storing files into SAM
will have to deal with this attribute.

2.4.4 FILE_SIZE and like attributes
FILE_SIZE_UNITS_ID replaces the FILE_SIZE_UNITS attribute and
points into a new FILE_SIZE_UNITS table.

The FILE_SIZE and FILE_SIZE_UNITS_ID attributes are now non-
nullable. For the schema migration, if FILE_SIZE is null, replace it with the
value from KBYTE_FILE_SIZE and set the FILE_SIZE_UNITS_ID to
correspond to Kbytes. KBYTE_FILE_SIZE will no longer be present in the
schema.

10/16/2003

9 of 13

2.4.5 CRC_TYPE and CRC_VALUE attributes
These fields have become non-nullable. For the schema migration, if
CRC_VALUE is null, replace it with “unknown value”. If CRC_TYPE is null,
replace it with “unknown crc type”.

2.4.6 FIRST_EVENT_NUMBER and
LAST_EVENT_NUMBER attributes

These attributes are now nullable (were non-nullable). This information
should be determined as meta-data by applications writing files to be stored in
SAM. DB server methods and SAM applications must accept this information
for storage in the database. However, it will be difficult to fill in these
attributes for files already stored in SAM without actually reading each file
and determining the event numbers. Perhaps this is more trouble that it’s
worth. Given that the farm does not process events in order, perhaps these
fields are not so useful for DØ and should be left null always.

3 Valid Data Groups

Currently, users must remember all of the versions of the reconstruction
program that correspond to good data. When we re-reconstruct a set of data,
users must know that a certain reco version is now bad and should not be
used. Instead of having users remember all this information, SAM can keep
track of data that is valid for different purposes through Valid Data Groups.
Valid Data Groups are a new feature introduced by this schema.

3.1 Structure
The ER diagram for Valid Data Groups is shown below.

Figure 1: Valid data groups structure

Data files belonging to a valid data group have an entry in
DATA_FILES_VALID_DATA_GROUP, the mapping table between
DATA_FILES and VALID_DATA_GROUP. A valid data group may have a
name and a type defined in their respective tables. Furthermore, a valid data
group is associated with one or more application families.

10/16/03

10 of 13

An example valid data group is “p13Moriond2003”, containing all files valid
for analysis for Moriond 2003. A user would only have to remember this valid
data group name to gain access to these data.

3.2 Implementation
Several additions to the SAM DB server and application software are needed
to make valid data groups work:

• There must be automated mechanisms for managing the files that
belong to different valid data groups. For example, files rolling off the
farm should automatically be added to the “current” valid data group.

• For reprocessing operations, there must be mechanisms for removing
the original files from the group and adding the new files.

• There must be easy query mechanisms for viewing what files belong
to a valid data group.

• Valid data group queries must be added to the current data set
definition mechanisms.

4 Runs

In the current SAM database, a file can be associated with only one run
number. At DØ, this restriction is fine for raw files and files produced by the
reconstruction farm. But user skim files that may be placed back in SAM may
span more than one run. To allow for multirun files, a mapping table between
DATA_FILES and RUNS is added.

Figure 2: Connection to run numbers

4.1 Implementation
DB server methods and application programs that store data into SAM will
now have to fill the mapping table. While doing so, LOW_RUN and
HIGH_RUN from DATA_FILES should also be filled. Furthermore, query
applications will now have to do the table join with the mapping table to
determine the runs associated with a file.

4.2 Schema Migration
For event data, only thumbnail and thumbnail-bygroup data-tiers have files
that actually correspond to data from more than one run (this is true for DØ,
probably not for CDF). For all other data_tiers, just copy the value of the old
RUN_ID attribute from DATA_FILES into the new DATA_FILES_RUNS
table.

10/16/2003

11 of 13

For a thumbnail or thumbnail-bygroup file, get all of the RAW file parents
and put their run numbers into the DATA_FILES_RUNS table. Note that this
may involve several hops through the lineage table.

1. Given a thumbnail file ID

2. Look up FILE_ID_SOURCE in FILE_LINEAGES where
FILE_ID_DEST = the thumbnail file ID (this looks up the parents
of the thumbnail file).

3. For each FILE_ID_SOURCE, look up the data-tier in DATA_FILES.
If the data-tier is raw, then put its RUN_ID into the
DATA_FILES_RUNS table and associate it with the thumbnail file ID.

4. If the data-tier is not raw, then look up FILE_ID_SOURCE in
FILE_LINEAGES where FILE_ID_DEST = this fileID. (This looks
up the parents of the non-raw file – another hop). Then repeat 3.
above.

5 Luminosity Blocks

In the current SAM database, each file in DATA_FILES has
LUMBLOCK_MIN and LUMBLOCK_MAX attributes. At DØ these attributes are
only appropriate for raw files. CDF wants to store luminosity information in
the SAM database itself, and so new tables are added. DØ will take advantage
of only one of the new tables.

5.1 Structure
Instead of having the low and high luminosity block numbers associated with
a file in the DATA_FILES table, these values are placed in the
DATAFILE_LUMBLOCK table as shown in the diagram below.

Figure 3: Luminosity block information

The other tables are for storing CDF specific luminosity information and
would not be used at DØ. So this diagram is not quite accurate as the foreign
keys LUMBLOCK_ID_HIGH and LUMBLOCK_ID_LOW would be replaced by
regular non-null numeric data.

10/16/03

12 of 13

5.1.1 CDF Structure
Note that CDF has an additional table called LUMBLOCK_VERSION_TYPES.
It has two columns: LUMBLOCK_VERSION_ID and
LUMBLOCK_VERSION_DESCRIPTION (the latter will have values of
accelerator and livetimes). LUMBLOCK_VERSION_ID will be a foreign key
into LUMBLOCK_VERSION table. Furthermore, LUMBLOCK_VERSION’s
primary key will be a composite of LUMBLOCK_ID and
LUMBLOCK_VERSION_ID.

5.2 Implementation
The DB server methods and applications that fill in the high and low
luminosity block numbers need to now fill the DATAFILE_LUMBLOCK table,
but only for raw data-tier files. Queries for the luminosity block information
must also use that table.

Note that the DØ production farm has been filling in high/low luminosity
block information for non-raw data-tier files (e.g. thumbnails). Presumably,
these values are derived from the high/low luminosity block limits from the
file’s parents, but there’s no real guarantee that this was done correctly (the
luminosity tools ignore luminosity block information for non-raw data-tier
files). As specified above, DATAFILE_LUMBLOCK should only be filled for
data-tier raw files to avoid confusion.

6 DATA_FILES_RAW

In the current SAM DB schema, FILE_LINEAGES holds parent and child
information about a file (what file was run over to produce the current file and
what files have been produced by running over the current file). This
information is essential for luminosity determination and other tasks. To make
some luminosity (and perhaps other) tasks easier, a new table is introduced
that allows for a direct determination of the raw file parent of a given file
without having to traverse intermediate files. The structure of this design is
shown below.

10/16/2003

13 of 13

Figure 4: One step to RAW files scheme

6.1 Implementation
DB server methods and applications that insert files into the database will
have to traverse the file lineage and fill the DATA_FILES_RAW table
appropriately. Queries can be added in the future when they are developed for
luminosity or other applications.

Obviously files with data-tier of raw should not be inserted in this table.

